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Terminology

● We’ll be focusing on discrete (as 
opposed to continuous) representation 
of geometry; i.e., polygon meshes
● Many rendering systems limit themselves 

to triangle meshes
● Many require that the mesh be manifold

● In a closed manifold polygon mesh:
● Exactly two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected loop of faces
● In a manifold with boundary:

● At most two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s 
Fundamentals of Computer Graphics, pp. 262-263
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Terminology

● We say that a surface is oriented if:
a. the vertices of every face are stored in a fixed 

order
b. if vertices i, j appear in both faces f1 and f2, then 

the vertices appear in order i, j in one and j, i in 
the other

● We say that a surface is embedded if, 
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space 

with any other vertex, edge or face except where 
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate 
3-space into two parts: a bounded interior 
and an unbounded exterior.

A cube with “anti-clockwise” 
oriented faces

Klein bottle: 
not an 
embedded 
surface.

Also, terrible 
for holding 
drinks.

This slide draws much inspiration from Hughes and Van Dam’s 
Computer Graphics: Principles and Practice, pp. 637-642
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Normal at a vertex

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.
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Finding the normal at a vertex

Take the weighted average 
of the normals of 
surrounding polygons, 
weighted by each polygon’s 
face angle at the vertex

Face angle: the angle α 
formed at the vertex v by the 
vectors to the next and 
previous vertices in the face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF

6



Gaussian curvature on smooth surfaces

Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces

Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary smoothly: the 
normal to a face is constant on the face, and at edges and 
vertices the normal is—strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view travels across an 

edge from one face to another) or not at all (as one's point of view travels 
within a face.) 

The Gaussian curvature of the surface of any polyhedral 
mesh is zero everywhere except at the vertices, where it is 
infinite.
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Angle deficit – a better solution for 
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined to be two π 
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Hmmm…

Angle deficit
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Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed 
surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces
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The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ
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The Voronoi diagram(2) of a set of 
points Pi divides space into 
‘cells’, where each cell Ci 
contains the points in space 
closer to Pi than any other Pj.

The Delaunay triangulation is the 
dual of the Voronoi diagram: a 
graph in which an edge 
connects every Pi which share a 
common edge in the Voronoi 
diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet 
domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams
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Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.
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Delaunay triangulations and equi-angularity

The equiangularity of any 
triangulation of a set of points 
S is a sorted list of the angles 
(α1… α3t) of the triangles.
● A triangulation is said to be 

equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and empty circles

Voronoi triangulations have 
the empty circle property: in 
any Voronoi triangulation of S, 
no point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a 
set of points in Rn is the planar 
projection of a convex hull in 
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft 

the points upwards, onto a 
parabola in 3D 
(P’i={x,y,x2+y2}i). The 
resulting polyhedral mesh will 
still be convex in 3D.
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Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.
● This can be used to extract a skeleton of the 

surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       
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http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan


Fortune’s algorithm
1. The algorithm maintains a sweep line and a 

“beach line”, a set of parabolas advancing 
left-to-right from each point.  The beach line 
is the union of these parabolas.
a. The intersection of each pair of 

parabolas is an edge of the voronoi 
diagram

b. All data to the left of the beach line is 
“known”; nothing to the right can 
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the 

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s 

algorithm is O(n log n)
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GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be 

rendered on the GPU, 
search all points for the 
nearest point

Elegant (and 2D only):
● Render each point as a 

discrete 3D cone in 
isometric projection, let 
z-buffering sort it out
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Implicit surfaces 
Implicit surface modeling(1) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface 
modelling:
● Organic forms and nonlinear 

shapes
● Scientific modeling (electron 

orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force 
functions”, “blobby modeling”… 25



How it works
The user controls a set of control 
points; each point in space 
generates a field of force, which 
drops off as a function of distance 
from the point.  This 3D field of 
forces defines an implicit surface: 
the set of all the points in space 
where the force field sums to a key 
value.

Force = 2

1

0.5

0.25 ...
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A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0    ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3 ≤ r < b
  0 b    ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)



Discovering the surface

An octree is a recursive subdivision of 
space which “homes in” on the surface, 
from larger to finer detail.  
● An octree encloses a cubical volume in space.  

You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.
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Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are 

“cold” (below the force limit) then the implicit surface crosses the 
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more 
rings, which can be triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any 
child whose vertices are all hot or all cold.
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Polygonizing the surface

Recursive subdivision (on a quadtree):
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Polygonizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed separately.  ↓

Images courtesy of Diane Lingrand
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http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html


Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose 

vertices are the midpoints of the edges which lie 
between hot and cold vertices.

● The vertices of the implicit surface can be more 
closely approximated by points linearly interpolated 
along the edges of the cube by the weights of the 
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)
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Implicit surfaces -- demo
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